Guidance that Regulates Advancing Clinical iPSCs

Sita Somara, PhD MBA

Soma Life Science Solutions

Durendal Al

Induced Pluripotent Stem Cells (iPSC)

- · Discovered by Shinya Yamanaka in 2006
- iPSCs generated by reprogramming adult somatic cells
- Achieved by introducing four key transcription factors: Oct3/4, Sox2, Klf4, and c-Myc.

Somatic Cells Choices and Reprogramming Factors

Key Transcription Factors

Oct4 (Octamer-binding transcription factor 4 / POU5F1)

- Essential for maintaining pluripotency.
- Regulates genes involved in early embryonic development.

Sox2 (SRY-box transcription factor 2)

- Partners with Oct4 to activate pluripotency genes.
- Suppresses differentiation pathways.

Klf4 (Kruppel-like factor 4)

- Has dual roles in promoting proliferation and inhibiting apoptosis.
- Helps establish the correct epigenetic state.

c-Myc (Myelocytomatosis oncogene)

- Promotes cell proliferation and loosens chromatin structure.
- Improves reprogramming efficiency but increases risk of tumorigenesis.

Successfully generated from various cell types:

- Fibroblasts (skin biopsies)
- Peripheral blood mononuclear cells (PBMCs)
- Keratinocytes
- Urine-derived epithelial cells
- Adipose-derived stem cells

Additional Factors (sometimes used to enhance or replace Yamanaka factors)

- **Nanog** strengthens and maintains pluripotency.
- Lin28 RNA-binding protein that regulates microRNA processing.
- Esrrb, Tbx3, Nr5a2 used in alternative reprogramming strategies.

Reprogramming Methods

Method	Mechanism	Advantages	Disadvantages		
Integrating	ntegrating				
Retroviral vectors	Insert genes into host genome via reverse transcription	High efficiency	Risk of insertional mutagenesis; not suitable for clinical use		
Lentiviral vectors	Infect dividing and non-dividing cells	Efficient and stable expression	Integration risks; possible gene disruption		
PiggyBac transposon	Integrates transgenes that can later be excised	Reversible integration	Potential residual footprint; intermediate risk		
Non –Integrating – Viral, No	on-viral, Small Molecule				
Sendai virus	Delivers factors via cytoplasmic replication; no DNA stage	High efficiency; no genome integration	Requires viral clearance before clinical use		
Episomal plasmids	Transiently express reprogramming factors; replicate episomally	Safer; footprint-free	Lower efficiency; may require repeated transfection		
mRNA transfection	Synthetic mRNA encoding reprogramming factors	No genomic integration; high safety	Requires daily transfection; technically demanding		
Protein transduction	Direct delivery of reprogramming proteins fused with cell-penetrating peptides	No genetic material involved	Very low efficiency; labor-intensive		
MicroRNA-based methods	miRNAs modulate gene networks to promote pluripotency	Potential for high efficiency	Not sufficient alone; usually used with other methods		
Chemical reprogramming	Small molecules replace some transcription factors	Safer, defined conditions	Still low efficiency; under development		

Minority Owned Business Enterprise | One stop for all Translation Need | Global Solution Provider

Innovations - Technology - Biotherapeutics

Life Science Solutions

SOMA

Choice of Reprogramming Method

Key Considerations When Choosing a Method

- Clinical use → Favor non-integrating and footprint-free methods (e.g., mRNA, episomal, Sendai).
- Efficiency and convenience → Viral methods are more efficient but have safety concerns.
- Scalability and GMP compliance \rightarrow Consider reproducibility, safety, and regulatory expectations.

Clinical Implications of iPSCs

- Disease Modeling
- Drug Discovery and Toxicity Testing
- Regenerative Medicine and Cell Therapy
- Personalized Medicine
- Gene Editing and Functional Genomics
- Tissue and Organ Engineering
- Immunotherapy
- Reproductive and Developmental Biology
- Treating Age-related Disease
- iPSC based Cancer Therapy

Domain	Application	Impact
Regenerative Medicine	Cell replacement therapies	Potential for treating Parkinson's, macular degeneration, diabetes, spinal cord injury, etc.
Oncology	iPSC-derived NK/CAR- T cells	Off-the-shelf immunotherapies for cancer treatment
Disease Modeling	Patient-specific iPSCs	Study disease mechanisms using iPSCs derived from patients with genetic disorders
Drug Screening	High-throughput testing	Screen candidate drugs in disease-relevant iPSC-derived cell types
Toxicology Studies	Safety pharmacology	Predict adverse effects on human tissue early in drug development
Reproductive Medicine	Germ cell derivation	Potential in fertility preservation and treatment (still experimental)

Some iPSC-derived Therapies

Therapy Name	Developer	Cell Туре	Target Indication(s)	FDA Status	Key Features
FT516	Fate Therapeutics	IPSC-derived NK cells	Relapsed/refractory hematologic malignancies (e.g., AML, NHL, MM)	IND cleared; Phase 1 trial ongoing	Off-the-shelf NK cells engineered with a novel CD16 Fc receptor to enhance antibody-dependent cellular cytotoxicity.
FT500	Fate Therapeutics	iPSC-derived NK cells	Advanced solid tumors	IND cleared; Phase 1 trial ongoing	First iPSC-derived NK cell therapy cleared for clinical testing; designed for use alone or with checkpoint inhibitors.
FT819	Fate Therapeutics		B-cell malignancies (CLL, ALL, NHL)	IND cleared; Phase 1 trial ongoing	First iPSC-derived CAR T-cell therapy; engineered with 1XX CAR signaling domain and TRAC locus insertion to enhance efficacy and safety.
CYP-001	Cynata Therapeutics	Istom colle	Steroid-resistant acute graft-versus-host disease (GvHD)	Phase 1 trial completed	First formal clinical trial of an allogeneic iPSC-derived cell product; demonstrated positive safety and efficacy data.
OpRegen	Lineage Cell Therapeutics		Dry age-related macular degeneration (AMD)	Phase 1/2a trial ongoing	Designed to replace damaged RPE cells in patients with AMD; showed promising preliminary results.
NTC-201-6A	Neurotech Pharmaceuticals	Icells expressing cillary	Macular telangiectasia type 2	Phase 2/3 trial ongoing	Encapsulated cell therapy implanted into the eye to deliver therapeutic proteins directly to the retina.
ОрСТ-001	BlueRock Therapeutics	ICENS	Primary photoreceptor diseases (e.g., retinitis pigmentosa)	IND cleared; Fast Track designation; Phase 1 trial ongoing	First iPSC-derived photoreceptor therapy to enter clinical trials; aims to restore vision by replacing degenerated retinal cells.
XS-411	XellSmart Biopharmaceutical	iPSC-derived dopaminergic neural progenitor cells	Parkinson's disease	IND cleared; Phase 1 trial ongoing	Allogeneic, off-the-shelf therapy targeting motor symptoms; early trials show promising safety and efficacy.
XS-228	XellSmart Biopharmaceutical		Amyotrophic lateral sclerosis (ALS)	IND cleared; Orphan Drug Designation; Phase 1 trial ongoing	First-in-class regenerative neural cell therapy for ALS; aims to slow disease progression.
Fertilo	Gameto		Fertility treatment (IVF support)	IND cleared; Phase 3 trial ongoing	Aims to mature eggs outside the body, reducing hormone injections and shortening IVF cycles.

Regulatory Categorization of iPSCs

iPSCs can be classified as either **raw materials** or part of a **final product**

As Raw Material	Use Case	Final Product	iPSCs Role
In most therapeutic contexts, iPSCs are treated as raw/intermediate materials, especially when they are used as a starting point to derive	iPSCs differentiated into retinal cells	Retinal pigment epithelial (RPE) cells	Raw material
specialized cells or tissues. Must meet raw material specifications under GMP. Require characterization for:	iPSC-derived cardiomyocytes for heart failure	Cardiomyocyte therapy	Intermediate
 Identity, Purity, Sterility, Genomic stability The final product is regulated (e.g., iPSC-derived NK cells), not the 	iPSC-derived NK cells for immunotherapy	Allogeneic NK cell therapy	Starting cell source
iPSCs themselves.	iPSC-derived beta cells for diabetes	Insulin-producing islets	Source material
		*	

As Final Product

In rare or experimental settings, iPSCs themselves may be administered or studied as the **final product**—for example, in research trials involving autologous iPSC transplantation.

Considerations:

DURENDAL **AI**

- Extremely high risk due to **undifferentiated state and tumorigenic** potential.
- Not widely used or approved in clinical settings.
- Require rigorous characterization and demonstration of safety and efficacy.

Aspect	iPSCs as Raw Material	iPSCs as Final Product
Common Use	Manufacturing of cell/tissue products	Experimental/early research
Risk Level	Lower (processed further)	Higher (tumorigenic potential)
Regulatory Treatment	Intermediate under GMP	Final biologic product (351 HCT/P)
Example	iPSC \rightarrow Cardiomyocytes	iPSC autologous transplant

8

Regulatory Pathway and Framework for iPSCs

FDA – Center for Biologics Evaluation and Research (CBER)		
Regulatory Pathway	iPSC-derived products are regulated as 351 HCT/Ps under the PHS Act	
IND Requirement	Final product must be developed under an Investigational New Drug (IND) application	
iPSCs Role	Mostly treated as raw material, subject to raw material qualification and GMP sourcing standards	
DMF (Drug Master File)	A Type II DMF may be submitted for proprietary iPSC lines to support CMC sections of INDs or BLAs	
Material Traceability	Must be traceable to donor, with full donor screening, testing, and consent per 21 CFR Part 1271	
Cross-reference Use	DMFs can be cross-referenced in multiple INDs to protect proprietary information on the iPSC source	
Characterization	Identity, Purity, Sterility, Potency, and Karyotypic/Genomic Stability Testing	
Long-term Safety	Required for assessing delayed adverse effects, particular tumor formation	

Type II DMF – Drug Substance (iPSCs as Raw Material)

Content Includes

- Source and origin of cells (donor information, screening, consent)
- Reprogramming method (e.g., non-integrating Sendai virus, mRNA)
- Manufacturing and expansion process
- Characterization and quality control assays
- Stability testing (e.g., under cryopreservation)
- Storage and shipping conditions
- Quality management systems (GMP compliance)

Note: DMFs are not approved by the FDA but reviewed in support of IND/BLA applications.

Minority Owned Business Enterprise | One stop for all Translation Need | Global Solution Provider

DURENDAL AI

Regulatory Guidances for iPSCs

Guideline	Title	Key Points
21 CFR Part 1271	HCT/P Regulation	Donor screening, informed consent, testing for communicable diseases
21 CFR Part 210/211	GMP for Biologics	Facility, equipment, process control, documentation
21 CFR Part 312	IND Regulations	Applies to products derived from iPSCs
FDA Guidance (2022)	Considerations for the Development of Cell and Gene Therapy Products	CMC expectations for iPSCs and their derivatives
FDA Guidance (2020)	Manufacturing Considerations for Licensed and Investigational Cellular and Gene Therapy Products	Raw material control, characterization, stability
FDA Guidance (2010)	Characterization and Qualification of Cell Substrates and Other Biological Raw Materials Used in the Production of Viral Vaccines for Infectious Disease Indications	Applies to iPSCs as starting materials
FDA Guidance (2011)	Testing of Retroviral Vector-Based Gene Therapy Products	Applies if integrating vectors are used in iPSC generation
USP <1046>	Cell and Gene Therapy Products	Quality attributes for raw materials
USP <1043>	Ancillary Materials for Cell, Gene, and Tissue-Engineered Products	Covers safety and quality requirements for raw materials

Requirement	Details	
IND Application	Preclinical studies (tumorigenicity, biodistribution), CMC data, proposed clinical protocols	
GMP Compliance	Manufacturing facilities must follow Good Manufacturing Practice (GMP) under 21 CFR Parts 210, 211, and 1271	
Characterization	Identity, purity, potency, sterility, and karyotypic/genomic stability testing	
Long-Term Safety Monitoring	Required for assessing delayed adverse effects, particularly tumor formation	

DURENDAL AI

ICH Guidelines as applicable to iPSCs

ICH Code	Title	Relevance
ICH Q5D	Derivation and Characterization of Cell Substrates Used for Production of Biotechnological/Biological Products	Core guidance for cell substrate qualification (applies directly to iPSCs)
ICH Q5A(R2)	Viral Safety Evaluation of Biotechnology Products Derived from Cell Lines of Human or Animal Origin	Required for iPSC viral testing and validation of virus clearance
ICH Q5B	Analysis of the Expression Construct in Cells Used for Production of r-DNA Derived Protein Products	Relevant if vector systems are used in iPSC reprogramming
ICH Q6B	Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products	Quality specs for identity, purity, potency, and safety
ICH Q1A–Q1E	Stability Testing Series	Required for iPSC stability data (including cryopreserved stocks)
ICH Q7	GMP for Active Pharmaceutical Ingredients	Applicable principles for raw material control and traceability
ICH Q8–Q10	Quality by Design (QbD), Risk Management, and Quality Systems	Emphasize risk-based control of iPSC variability and CQA management

Quality Specifications of iPSCs

Specification Category	Parameter	Details
Donor Eligibility	Screened for communicable disease	HIV, HBV, HCV, HTLV, HCV, HTLV, Treponema, WNV, Zika etc - Screened and tested per 21 CFR 1271.75–1271.90
Identity	Expression of pluripotency markers	Oct4, Sox2, Nanog, TRA-1-60, SSEA-4 (confirmed via immunostaining, qPCR, RT-PCR or flow cytometry)
Purity	Absence of differentiated cells %undifferentiated vs differentiated	Minimal presence of lineage-specific markers, Flow cytometry for lineage-specific markers
Viability	Post-Thaw Cell Viability (≥85%)	Trypan-blue exclusion or viability dye with flow cytometry
Sterility	Microbial testing	Mycoplasma (PCR or Culture Method), endotoxin (0.25 EU/mL or below acceptable per final use, LAL Assay), bacterial and fungal contamination must be absent (USP <71>)
Residual Reprogramming Factors	Integration-free status; Clearance of reprogramming factors (e.g., Sendai virus)	Absence of vector sequences in non-integrating methods (e.g., Sendai clearance assay) qPCR or ddPCR
Tumorigenicity	Risk assessment	Evaluate undifferentiated iPSCs or transformed clones that could form tumors
Adventitious Agents	Absence of Viral contaminant (human or animal)	Adventitious Agent Testing (AAT) panel
Potency (Pluripotent Functionality)	Tri-lineage differentiation	Capacity to form ectoderm, mesoderm, and endoderm in vitro or in vivo (teratoma formation assay)
Karyotypic Stability	Genomic integrity	G-banding, SNP array, or WGS to detect chromosomal abnormalities
Stability	Consistent post cryopreservation/ long-term storage	Stability studies (viability, identity, karyotype)

Minority Owned Business Enterprise | One stop for all Translation Need | Global Solution Provider

Innovations - Technology - Biotherapeutics

Life Science Solutions

SOMA

Cryopreservation, Storage, Stability and Logistics

Cryopreservation:

URENDAL **AI**

- Maintain viability, genetic stability, and pluripotency post-thaw.
- Enable **consistent supply** of a wellcharacterized iPSC bank.

Cryoprotectant - 10% DMSO (dimethyl sulfoxide) in serum-free or serum-containing cryomedia **Freezing Protocol** -Controlled-rate freezing (typically -1°C/min down to -80°C) then transfer to liquid nitrogen

Cell Density - $\sim 1-2 \times 10^{6}$ cells/mL per cryovial **Passage Number** - Early-passage iPSCs preferred (P5–P15) to reduce risk of genomic instability **Validation** -Post-thaw viability \geq 85%, reattachment efficiency, karyotyping, pluripotency marker expression

Component	Purpose	Required By
Cryopreservation	Long-term preservation of functional iPSCs	GMP, USP <1046>
Stability	Demonstrate consistent quality over time	FDA, EMA, ICH Q1A-E
Storage	Maintain iPSC integrity	GMP, 21 CFR 211

Stability - Conducted under ICH conditions to determine shelf-life, post-thaw viability, and functionality

- Real-time: Long-term LN2 storage
- Accelerated: Short-term -80°C to test impact of suboptimal conditions

Parameter	Assessment Method	Acceptance Criteria
Viability	Viability Trypan blue or flow cytometry	
Pluripotency Immunocytochemistry / Flow cytometry		OCT4, SOX2, SSEA-4, TRA-1-60 positive
Karyotype	G-banding / SNP microarray	No abnormalities
Differentiation Potential	In vitro 3-germ layer or EB assay	Confirmed
Microbial Contamination	Sterility, mycoplasma	Negative
Vector Clearance (if applicable)	qPCR for episomes / Sendai	Undetectable

Storage: Vapor phase liquid nitrogen (-150°C or colder)

Aspect	Specifications		
Storage Temperature	Liquid nitrogen vapor phase (< -150°C) preferred		
Vial Type	Certified cryovials, barcoded for traceability		
Labeling	Unique ID, cell line name, passage number, date, lot/batch number		
Monitoring	Continuous temperature monitoring, alarm system, SOPs for excursions		
Inventory Control Electronic inventory linked to CoC/CoO and testing data			

fe Science

Traceability - Chain of Identity, Chain of Custody

Ensures accountability and traceability for regulatory audits (FDA, EMA) and is essential under GMP/GTP requirements.

The **Chain of Identity** ensures that the product administered to the patient is **traceably linked back to the original donor**, especially critical in autologous therapies (e.g., iPSC-derived personalized cells).

Element	Description			
Focus	Patient – specific Identity			
Tracks	Who it belongs to			
Used in	Autologous and Allogeneic			
Regulated by	21 CFR Part 1271, 21 CFR 210/211			
Unique Identifier	Donor ID \rightarrow Sample ID \rightarrow iPSC Line ID \rightarrow Final Product Lot ID			
Patient-Derived Source Material	Documented collection, labeling, and verification of original tissue			
iPSC Derivation Records	Mapping donor to reprogrammed line and subsequent expansion			
Labeling and Barcoding	All containers (cryovials, bags, etc.) tagged with traceable barcodes			
Manufacturing Linkage	Every process step must reference the same identity record			
Clinical Use	Matched documentation confirming correct patient receives their designated product			

The **Chain of Custody** refers to the **documented and auditable trail of the physical handling, storage, transport, and processing** of a product or sample — from the donor material through to final product delivery (or disposal).

Element	Description		
Focus	Physical Possession		
Tracks	Who handles it		
Used in	All product types		
Regulated by	GMP, GTP, GDocP		
Custodian Details	Each person, site, or entity who physically handles or stores the material		
Material Status	Identity, lot number, quantity, storage condition, and integrity check		
Transfer Documentation	Date/time, method of transport, chain of custody forms, courier logs		
Conditions Monitoring	Temperature, humidity, security logs during transport or storage		
Deviations	Any break in handling protocol or excursion event (e.g., LN2 tank alarm triggered)		

URENDAL **AI**

Integration in iPSC Workflows

Stage	Chain of Identity	Chain of Custody	
Donor Collection	Donor consent, ID assigned	Collected sample, shipped to lab	
iPSC Reprogramming	ID recorded in MFG log, cell line labeled	Custody logs from source to lab	
Cell Banking	Bank ID linked to donor	Custody logs for LN2 storage	
Manufacturing	Traceability from cell line to batch	MFG site logs, internal transfers	
Clinical Use	Matched to patient ID (autologous)	Delivery, infusion center records	

Best Practices

DURENDAL AI

- Use barcode or RFID systems for identity tracking.
- Maintain digital audit trails in LIMS or QMS platforms.
- Validate labeling systems for durability under LN2.
- Reconcile donor-product-patient mapping at each QA checkpoint.
- Review Col/CoC as part of batch release and QP certification (EU).

Thank you

sita.somara@durendal.ai

Minority Owned Business Enterprise | One stop for all Translation Need | Global Solution Provider

Type of FDA Meetings relevant to iPSCs

Meeting Type	Formal Status	Timing / Stage	Purpose	Regulatory Division	Binding Feedback	Typical Use Case
INTERACT (INitial Targeted Engagement for Regulatory Advice on CBER/CDER ProducTs)	Early Regulatory Engagement	Preclinical (before Pre- IND)	Early scientific input for novel therapies	CBER / CDER	× Non-binding	iPSC-derived therapies, gene editing, novel delivery methods
Pre-IND	Туре В	Before IND submission	Discuss preclinical, CMC, and clinical plans	CBER / CDER	Binding	Confirm readiness for IND submission
Туре А	Formal	Urgent situations	Resolve clinical holds or disputes	CBER / CDER	Binding	After clinical hold or complete response letter
Туре В	Formal	Key development milestones	Includes Pre-IND, End-of- Phase 1, End-of-Phase 2, Pre-NDA/BLA	CBER / CDER	Binding	Structure pivotal trials, agree on endpoints, plan submissions
Туре С	Formal	Anytime during development	Any meeting not covered by A or B	CBER / CDER	Binding	Long-term safety planning, CMC strategy
CATT (Committee for Advanced Therapies Team)	Informal	Very early stage or classification uncertainty	Regulatory classification, review pathway clarity	CBER	× Non-binding	Clarify HCT/P 351 vs 361, iPSC classification or review assignment
RMAT Designation Meeting (Regenerative Medicine Advanced Therapy)	Designation-based	Post early clinical data	Frequent interactions for RMAT-designated therapies	CBER	Binding (for development plans)	iPSC-based therapies showing potential to address unmet need
Pre-BLA / Pre-NDA	Туре В	Before submitting BLA or NDA	Discuss submission content, formatting, and data requirements	CBER / CDER	Binding	Final alignment before license application
Post-Approval Meetings	Type C (or informal)	After product approval	Address post-marketing requirements or changes	CBER / CDER	✓ / X (depends on format)	New indications, manufacturing scale-up

INTERACT Meeting (for early-stage products)

Stands For: INitial Targeted Engagement for Regulatory Advice on CBER/CDER ProducTs. Purpose: Early feedback for novel products (e.g., iPSCs, gene therapies). Ideal Timing: Before Pre-IND. Offered by: CBER (biologics) and CDER (drugs). Benefit: Clarifies regulatory expectations and

helps shape early development plans.

Type A Meeting

Purpose: Resolve stalled programs or address disputes (e.g., clinical hold, dispute resolution). Examples:

Dispute resolution after a complete response letter.

Meeting after clinical hold.

Timeline: Scheduled within 30 days of request.

Type B Meetings These are the most common and structured meeting types:

Pre-IND Meeting

- **Purpose**: Discuss preclinical data, CMC plans, and clinical trial designs before submitting an IND.
- Ideal For: New or complex products like iPSC-derived therapies.
- Benefits: Clarifies FDA expectations, avoids major deficiencies.

End-of-Phase 1 Meeting

- **Purpose**: Evaluate safety and plan for Phase 2 trials.
- Note: Less common unless there's a unique issue or high risk.

End-of-Phase 2 Meeting (EOP2)

- **Purpose**: Review Phase 2 results, agree on Phase 3 design, endpoints, and statistical analysis plan.
- Timing: Before starting pivotal trials.

Pre-NDA/BLA Meeting

- Purpose: Discuss data presentation and format for a New Drug Application (NDA) or Biologics License Application (BLA).
- Goal: Ensure submission readiness.

RMAT Designation Meetings (Regenerative Medicine Advanced Therapy)

- Available For: Therapies with regenerative medicine potential.
- **Requirement**: Preliminary clinical evidence showing potential to address unmet medical needs.
- Benefit: Access to early, frequent meetings and priority review features.

CATT Meeting (Committee for Advanced Therapies) Meeting

- not an official FDA meeting type (like Type A/B/C), but a preliminary, informal scientific interaction. It is designed to provide early regulatory and scientific input for **complex or novel products**, such as iPSC-derived therapies, Gene therapies, Cell-based therapies, Tissue-engineered products Purpose

- •Discuss product classification (e.g., HCT/P 351 vs. 361)
- •Address novel scientific or regulatory questions
- •Get feedback on early-stage concepts before formal IND or INTERACT submissions
- •Understand how your product may be reviewed (CBER divisions or specific FDA branches)

Request - Very early in development, often, Before initiating IND-enabling studies or When the product

or technology doesn't fit neatly into existing regulatory categories

Prior to or in lieu of an INTERACT meeting, especially if classification or jurisdiction is unclear

Minority Owned Business Enterprise | One stop for all Translation Need | Global Solution Provider

Type C Meeting Purpose: Any other product development meeting not covered by Types A or B. Examples: Long-term safety monitoring plans. Manufacturing scale-up discussions. Flexibility:

Broader and less defined; can be used as needed.

Innovations - Technology - Biotherapeutics