

Controlled Environments for iPSC Production

Alicia D Henn, PhD MBA Chief Scientific Officer BioSpherix, LLC

Ver. 10232024

The Cleanroom Challenge

Traditional Cleanrooms

- Expensive to install, operate, and maintain
- Restricted in use
- Not operator-friendly
- Risk of contamination from personnel
- Not designed for the needs of cells

- Operator-friendly
- Cytocentric[®]

Xvivo GMP System®

Reduced installation, operation, and maintenance costs Modular, scalable, and movable Mitigates microbial risk

The Cleanroom Challenge

What is Cytocentric[®]?

- An environment that meets the needs of cells
- The cell production process is completely **closed** and **controlled** from start to finish
- Environmental conditions are optimal, physiologic, and constant
- No exposure to room air

The Xvivo System[®] for iPSC Production

Mitigates Microbial Risks

- Cells are protected from room air risks
- Separation between cells and people
- Constant HEPA filtration
- Inputs from compressed, dry gases
- Patented, self-sanitizing process
- ISO 5 compliant
- Reduced harmful antibiotics and biocides

The Xvivo System[®] for iPSC Production

Modular, Scalable, Movable

- Adaptable to changing protocols Accommodates third-party equipment
- Customizable

Automation for iPSC Production

Reproducible Actions + Reproducible Conditions = Better Constructs

The Xvivo System®

The Xvivo System environment is Cytocentric by design

Pre-clinical iPSC Research in the Xvivo System

Human iPSC Used to Generate

- Trophoblasts
- Cord Blood Endothelial Cells
- Retinal Endothelial Cells
- Cardiac Organoids
- Neurons

scientific reports

OPEN Modeling preeclampsia using human induced pluripotent stem cells

Mariko Horii^{1,2}, Robert Morey^{2,3}, Tony Bui^{1,2}, Ojeni Touma^{1,2}, Katharine K. Nelson^{1,2}, Hee-Young Cho^{1,2,4}, Hannah Rishik^{1,2}, Louise C. Laurent^{2,3} & Mana M. Parast^{1,2⊠}

Pre-clinical iPSC Research in Xvivo Systems

Human Neural Cells from iPSC in the Xvivo System

- Differentiate into hiNSCs
- Which migrate through the BBB in mice
- Distribute through the brain
- Differentiate into glial cells
- Partially restore alpha-I-iduronidase deficiency

J Vis Exp. 2016 Jun 10;(112):53685. doi: 10.3791/53685.

Culturing Human Pluripotent and Neural Stem Cells in an Enclosed Cell Culture System for Basic and Preclinical Research

Alexander E Stover¹, Siranush Herculian¹, Maria G Banuelos¹, Samantha L Navarro¹, Michael P Jenkins¹, Philip H Schwartz²

> Mol Ther Methods Clin Dev. 2024 Nov 5;32(4):101367. doi: 10.1016/j.omtm.2024.101367. eCollection 2024 Dec 12.

Human iPSC-derived neural stem cells engraft and improve pathophysiology of MPS I mice

Caitlin C Calhoun¹, Shih-Hsin Kan¹, Alexander E Stover¹, Jerry F Harb¹, Edwin S Monuki²³, Raymond Y Wang ⁴ ⁵, Philip H Schwartz ¹ ³

Affiliations + expand

PMID: 39764351 PMCID: PMC11701249 DOI: 10.1016/j.omtm.2024.101367

Human iPSC Grown in the Xvivo System with Cell-X Automation

- Skin samples from patients with genetic blindness
- Generate iPSC in low O₂
- High O₂ differentiate into retinal progenitors
- Place in scaffolds to make retinal patch

Automating iPSC generation to enable autologous photoreceptor cell replacement therapy

Laura R. Bohrer^{1,2}, Nicholas E. Stone^{1,2}, Nathaniel K. Mullin^{1,2}, Andrew P. Voigt^{1,2}, Kristin R. Anfinson^{1,2}, Jessica L. Fick^{1,2}, Viviane Luangphakdy^{4,6}, Bradley Hittle³, Kimerly Powell³, George F. Muschler^{4,5}, Robert F. Mullins^{1,2}, Edwin M. Stone^{1,2} and Budd A. Tucker^{1,2*}

"As reprogramming of somatic cells from elderly individuals can be difficult, the ability to reduce atmospheric oxygen tension can be extraordinarily useful."

cGMP Production of iPSC in the Xvivo System

Pre-print: cGMP Clinical-grade iPSC

- 5% O₂ for iPSC generation
- Higher O₂ for retinal organoids
- Xeno-free reagents
- Retinal organoids survive in rats' eyes
- Form new synaptic connections

Title: Production of clinical grade patient iPSC-derived 3D retinal organoids containing transplantable photoreceptor cells.

Authors: Laura R. Bohrer^{1,2}, Luke A. Wiley^{1,2}, Allison T. Wright^{1,2}, Bradley Hittle⁴, Mallory J. Lang^{1,2}, Louisa M. Affatigato^{1,2}, Kimerly A. Powell⁴, Lorena M. Haefeli^{1,2}, Ian C. Han^{1,2}, Robert F. Mullins^{1,2}, Edwin M. Stone^{1,2}, and Budd A. Tucker^{1,2,3}

Decentralized Manufacturing for iPSC

The Three L's of iPSC Production – Location, Location, Location

- Autologous therapies generated, maintained, differentiated and stored cGMP
- Using offsite CROs may require cryopreservation/shipping
- Some constructs with neurons are too delicate
- Need to place production near surgical sites everywhere

A protocol for the generation of xeno-free, cGMP-compliant patient-specific iPSCs from skin biopsy

Luke A. Wiley^{1,2}, Kristin R. Anfinson^{1,2}, Cathryn M. Cranston^{1,2}, Emily E. Kaalberg^{1,2}, Malia M. Collins^{1,2}, Robert F. Mullins^{1,2}, Edwin M. Stone^{1,2}, and Budd A. Tucker^{1,2,*} ¹Stephen A. Wynn Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA

Clonable Cell Conditions in the Xvivo System®

Australia

Jordan

Decentralized Manufacturing for iPSC in the Xvivo System

- Identical conditions across multiple locations
- Centralized, remote monitoring and control
- Enables proximity to the clinic
- No cryopreservation needed

Canada

e locations nd control

Decentralized Manufacturing

cGMP Production of Patient-Specific Organs in the OR in the Xvivo System

- Compassionate use case
- Installed, validated 6 weeks
- Produced trachea for baby

Our Customers

Xvivo Systems[®] are in locations across the world

The Xvivo System®

The Xvivo System environment is Cytocentric by design

Contact Us

Thank you! Sales@BioSpherix.com Youtube.com/@CytoCentric

Linkedin.com/company/BioSpherix